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Abstract. Minimizing total free energy by numerical calculations, we obtain the magnetic phase diagram
of perovskite Mn oxides, such as (La1−xXx)MnO3 with X = Ba, Ca, Sr, etc. in the whole doping region
from x = 0 to x = 1 at temperature T = 0. It is discovered that a spiral state is stable in a low
concentration of X ions while a canted state is stable in a high concentration of X ions, and a ferromagnetic
phase can exist in the intermediate concentrations when the antiferromagnetic interaction is weak. The
energy difference between spiral and canted states is found to be small when the Hund coupling is large.
Magnetic field induced spiral/canted phase transition is considered as a possible mechanism of the colossal
magnetoresistance (CMR) in the Mn oxides.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 72.15.Gd Galvanomagnetic and
other magnetotransport effects – 75.10.-b General theory and models of magnetic ordering

1 Introduction

Perovskite Mn oxides, (La1−xXx)MnO3 with X = Ba, Ca,
Sr, etc. have recently attracted considerable attention be-
cause of a huge negative magnetoresistance (colossal mag-
netoresistance or CMR) near room temperature [1–7]. The
resistivity drop due to an external magnetic field is usu-
ally much larger than that observed in magnetic multilay-
ers [8]. MR amplitude ∆R/R(H) as large as 106 has been
reported for (Pr-Ca)MnO3 [9]. So high a MR is believed
to be due to an insulator-metal transition caused by the
magnetic field.

It is well known that (La1−xXx)MnO3 are materials
in which an antiferromagnetic (AF) insulator phase at
x = 0 changes to a metallic ferromagnetic (FM) phase for
0.2 ≤ x ≤ 0.5 [10]. Appearance of the metallic ferromag-
netism on doping has been explained by the mechanism of
the double exchange interactions [11,12]. The Mn3+ ions
in LaMnO3 have four d shell eletrons, with three electrons
in the t2g state as localized spins of S = 3/2 and one elec-
trons in the eg state as itinerant electron of S = 1/2 due
to the Hund coupling. Because of the strong Hund cou-
pling and on-site Coulomb repulsion between eg electrons,
LaMnO3 is an antiferromagnetic insulator. By substitut-
ing X atoms for La atoms, Mn3+ ions change to Mn4+

ions with three localized electrons but none itinerant elec-
tron. The appearance of Mn4+ ions in (La1−xXx)MnO3

introduces mobile carriers (holes) into the Hubbard sub-
band. The vacant eg state of Mn4+ makes it possible for
eg electrons in surrounding Mn3+ ions to hop into the eg
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state of Mn4+ ions so long as the t2g spins of the neighbor-
ing Mn3+ and Mn4+ ions are parallel. Thus a competition
appears between a gain in the kinetic energy and a loss
in the exchange energy of t2g spins which favor antifer-
romagnetic coupling. With increasing number of mobile
carriers on further doping of X atoms, the gain in the ki-
netic energy overcomes the loss of the exchange energy,
which results in a transition to metallic ferromagnetism
around x ∼ 0.2.

Despite the long history of work on these materials,
however, the magnetic phase diagram of the Mn oxides
in the whole region with x from 0 to 1 is not completely
clear. A competition between the kinetic and exchange
energies led to the prediction of existence of the canted
(CN) ferromagnetism for 0 < x < 0.2 [13], while a spiral
(SP) state is recently demonstrated to be more stable [14].
Further investigations on the magnetic phase diagram are
then needed. Based up on the model Hamiltonian in [14],
we make a numerical calculation and obtain a phase di-
agram covering the whole region of x. It is shown that,
with increasing of holes, an AF state at x = 0 changes
first into a SP state, subsequently into a FM state, then
a CN state, and finally returns to an AF state at x = 1.
The energy difference between SP state and CN state is
found to be in inverse proportion to the strength of Hund
coupling. A magnetic field can change easily a SP state
into a CN state rather than into a FM state. The SP/CN
phase transition due to applied magnetic field provides a
plausible mechanism accounting for the CMR effect of the
perovskite Mn oxides.
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Fig. 1. Schematic illustrations of two-dimensional (1,1) SP
state (a) and CN state (b).

This paper is organized in the following way. In
Section 2, model Hamiltonian is introduced and an ex-
pression of free energy is given. The numerical results and
discussions are given in Section 3. The final section is the
summary.

2 Theoretical description

Including only Mn ions and neglecting effect of the other
atoms, we can obtain a model Hamiltonian in which the
correlated itinerant electrons couple with the localized
spins by a strong Hund coupling. Thus the Hamiltonian
is given by

H =− t
∑
〈ij〉σ

a†iσajσ +
∑
iσ

ε0a
†
iσaiσ +

U

2

∑
iσ

niσniσ̄

+ J
∑
〈ij〉

Si Sj −
K

2

∑
i

Si σi. (1)

Here, t(> 0) denotes the transfer integral of itinerant elec-
trons between nearest-neighbor (NN) sites,ε0 the on-site
potential of itinerant electrons, U the on-site Coulomb re-

pulsion between ↑ and ↓ spin itinerant electrons, a†iσ(aiσ)
is a creation (an annihilation) operator of an itinerant

electron at site i with spin σ, niσ = a†iσaiσ, J(> 0) is the
NN exchange interaction between localized spins, K(> 0)
represents the Hund coupling, and σ stands for the Pauli
matrix.

We apply the Hartree-Fock approximation to the
Hamiltonian and consider SP state and CN state respec-
tively. The illustrations for two-dimensional (1,1) SP and
CN states are shown in Figure 1. In our coordinate system,
the z-axis is taken to be perpendicular to all the spins, and
the direction of spin on site i can be denoted by its spher-
ical coordinate (π/2, ϕi). The relative angle between two
nearest neighbouring spins on sites i and j is ϕij = ϕi−ϕj.
Its absolute value |ϕij | is independent of i and j and can
be denoted as π+ 2θ (with 2θ the canting angle). In order
to determine the spin configurations completely, we have
to identify the signs of ϕij . In SP state, the signs depend
only on the relative displacements Rij = Ri−Rj, and for

any site i, we can write

ϕij =

{
π + 2θ, for Rij = x̂, ŷ
−(π + 2θ), for Rij = −x̂,−ŷ.

For CN state, we divide all sites into two sublattices so
that all the nearest neighbours of each site in sublattice
A belong to sublattice B, and vice versa for sublattice B.
The signs of ϕij in CN state rely on the i being in the
sublattice A or B:

ϕij =

{
π + 2θ, for i∈A
−(π + 2θ), for i∈B

for all the nearest neighbours j of site i. Obviously, both
SP and CN state become AF state or FM state respec-
tively as θ goes to 0 or π/2.

After decoupling the quartic Hund coupling term by
HFA, we will have the term σi〈Si〉, which depends explic-
itly on the orientation of 〈Si〉. This is not convenient for
further calculations, because the orientation of 〈Si〉 varies
from site to site. Therefore, we take the spin quantization
axis at each site to be along 〈Si〉, i.e., using a set of local
spin quantization axes. Rotation of spin quantization axes
from original fixed one to the set of local ones is equivalent
to a unitary transformation of the Hamiltonian,

ai↑ = e−iϕi/2(ci↑ + ci↓)/
√

2,

ai↓ = eiϕi/2(ci↑ − ci↓)/
√

2. (2)

By the transformation, our Hamiltonian is reduced to be

H = E0 +Hd +Hs, (3)

where E0 is the constant term, Hd is the Hamiltonian of
local spins, and Hs is the Hamiltonian of itinerant elec-
trons, with

E0 = −NUn↑n↓−J
∑
〈ij〉

〈Si〉〈Sj〉+(K/2)
∑
i

〈Si〉〈σi〉,

(4)

Hd =
∑
i

〈Li〉Si, (5)

and

Hs =− t
∑
〈ij〉σ

[cos(ϕij/2)c†iσcjσ + i sin(ϕij/2)c†iσcjσ̄]

+
∑
iσ

vσc
†
iσciσ . (6)

Here, Li = 2J
∑
j 6=i

Sj−Kσi/2, vσ = ε0 +Unσ̄−σK|〈Si〉|/2,

nσ = 〈c†iσciσ〉 is the electron density, with σ =↑ or ↓. We
next diagonalize the Hamiltonian Hs by considering SP
state and CN state, respectively.

For the (1,1,1) SP state with a propagation wave vec-
tor π + 2θ, and by Fourier transformation, equation (6)
becomes

Hs =
∑
kσ

[(vσ − εk sin θ)c†kσckσ − ε
′

k cos θc†kσckσ̄]. (7)
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Here, εk = −2t
∑d
l=1 cos kl, ε

′

k = 2t
∑d
l=1 sin kl, d denotes

the dimensionality. Introducing new Fermi operators dk↑

and dk↓ in terms of the relations

ck↑ = [U+(ξ)dk↑ + (εk/|εk|)U−(ξ)dk↓]/
√

2,

ck↓ = [(εk/|εk|)U−(ξ)dk↑ − U+(ξ)dk↓]/
√

2, (8)

with ξ = (1/2)arctan[∆E/|ε
′

k| cos θ], and U±(ξ) = | sin ξ±
cos ξ|/

√
2, the Hamiltonian is diagonalized as

Hs =
∑
k

[ESP− (k)d†k↑dk↑ +ESP+ (k)d†k↓dk↓], (9)

where

ESP± (k) = v0 − εk sin θ±(∆2
E + ε

′2
k cos2 θ)

1
2
, (10)

with v0 = (v↓+ v↑)/2 being the normalized on-site poten-
tial, and ∆E = (v↓− v↑)/2 being the effective field, which
represents the strength of Hund coupling.

For the CN state with two sublattices, the Fourier
transform of equation (6) is derived to be

Hs =
∑
kσ

[(vσ − εk sin θ)c†kσckσ + iεk cos θc†kσck̃σ̄], (11)

where k̃ is the reduced wave-vector corresponding to

k + k0/2, and k0 = (
∑d
l=1 b̂l) with b̂l the basis vec-

tors of the reciprocal lattice. Note that εk̃ = −εk. In
equation (11), two single-particle states with momentum

k and k̃ and opposite spins are coupled. By using the uni-
tary transformation

ck↑ = [U+(χ)dk↑ + i(εk/|εk|)U−(χ)dk̃↓]/
√

2,

ck̃↓ = [i(εk/|εk|)U−(χ)dk↑ + U+(χ)dk̃↓]/
√

2, (12)

with χ = (1/2)arctan[(∆E − εk sin θ)/|εk| cos θ], and

U±(χ) = | sinχ ± cosχ|/
√

2, the Hamiltonian is diago-
nalized as

Hs =
∑
k

[ECN− (k)d†k↑dk↑ +ECN+ (k)d†
k̃↓
dk̃↓], (13)

where

ECN± (k) = v0±(∆2
E + εk

2±2∆Eεk sin θ)
1
2 . (14)

Our results (Eqs. (10, 14)) recover the equations (2, 3) in
[14]. The results are also valid for two-dimensional (1,1)
SP and CN states as well as for one-dimensional states.
The eigenvalues of AF and FM states are correctly ob-
tained in the limits of θ = 0 and θ = π/2, respectively.

In determining phase diagram, only the ratios K/t and
J/t etc. are of significance, so we can let t = 1 for con-
venience. As we know, hole number per site in Mn ions
equals to the doping concentration x, so n↑ + n↓ = 1− x.
At T = 0 K, the total free energy per site is

F (θ) = −2dJS2 cos(2θ) +
1

N

∑
k

[E−f(E−) +E+f(E+)],

(15)

with f(ε) = θ(µ − ε), the Fermi-Dirac distribution func-
tion. Here, N is the total number of the lattice sites, and
k is the wave vectors. The first term in equation (15) is
the free energy of local spins. The chemical potential µ is
determined from the condition of fixed density:

1− x =
1

N

∑
k

[f(E−) + f(E+)], (16)

From equations (15, 16), we calculate the total free ener-
gies of SP state and CN state in the whole x− JS2 plane
respectively. By comparing the total free energies with re-
spect to θ at fixed x, we get the minimal free energies, and
then obtain the phase diagram.

3 Numerical results

When T = 0 K, only the lower energy branch E−(k) is
occupied by the carriers. So we merely consider the lower
branch in calculating the free energy of the itinerant elec-
trons. Then equation (15) changes to be

F (θ) = −2dJS2 cos(2θ) +
1

N

∑
k

E−f(E−), (17)

and equation (16) changes to be

1− x =
1

N

∑
k

f(E−), (18)

with

ESP− (k) = v0 − εk sin θ − (∆2
E + ε

′2
k cos2 θ)

1
2
, (19)

ECN− (k) = v0 − (∆2
E + εk

2 − 2∆Eεk sin θ)
1
2 . (20)

By assuming that ∆E > 2dt, which corresponds to the
case of large Hund coupling, we calculate the free energies
of SP state and CN state in two dimensions. Here, we let
∆E = 5, 10, 20, 100. Detailed process is as follows.

First, we let θ change from 0 to π/2, and using
equations (19, 20), we obtain a series of values of ESP− (k)

and ECN− (k) with different θ and k. Second, giving values
of x and JS2 and using equation (18), we get the chemical
potential µ. Substituting it into equation (17), we obtain
the free energy F (θ). Thus, we get a minimal free energy
with fixed θ and x. Third, let x change from 0 to 1, and
repeating the above procedure, we obtain a series of min-
imal free energies Fmin(θ) for SP state and CN state with
different x(0 ∼ 1). Then, we compare the minimal free en-
ergies of SP state and CN state with fixed x. If θ = π/2,
we define the system is in FM state, and if θ = 0, it is
in AF state. If θ 6= 0 and π/2, the system is in the state
(SP or CN) whose minimal free energy Fmin(θ) is lower.
Finally, let JS2 changes from 0 to a finite value, we obtain
the magnetic phase diagrams at T = 0 K for different ∆E

in the whole x− JS2 plane (see Fig. 2).



188 The European Physical Journal B

Fig. 2. Magnetic phase diagrams in x − JS2 plane with
different ∆E at T = 0K. (a) ∆E = 5 (dot line), (b) ∆E = 10
(solid line), (c) ∆E = 20 (short-dashed line), (d) ∆E = 100
(long-dashed line).

In Figure 2, we can find that, when the antiferromag-
netic interaction is weak (that means JS2 is small), a FM
phase can be found in the middle region of x. Strong
Hund coupling gives rise to FM double exchange inter-
action, which competes with AF superexchange interac-
tion and leads to AF/SP/FM/CN/AF or AF/SP/CN/AF
phase transitions as x changes from 0 to 1. With increasing
∆E , the area of FM phase in the whole phase diagram in-
creases. When the antiferromagnetic interaction is strong
enough (that means JS2 is large enough), the FM phase
disappears, and there are only SP and CN phases in the
diagram. Moreover, the areas of SP and CN phases are
not symmetric. It is obvious in Figure 2 that for lower
∆E value, the SP phase has larger area in the phase di-
agram than the CN phase. With increasing ∆E , the CN
phase occupies more and more area, and the boundary
line between the SP and CN phases moves to the left. Fi-
nally, for very large ∆E ∼ 100, the line lies at x = 0.5.
Especially, even in the absence of AF superexchange in-
teraction (JS2 = 0), x has to reach a certain value for
appearance of the FM phase, and the critical value of x
decreases with increasing ∆E .

Now, we make a qualitative comment on the MR
effects in Mn oxides. As we know, SP state has no net
global magnetization, but CN state as well as FM state
have global magnetizations of Ms sin θ and Ms, respec-
tively, with Ms the saturation magnetization. Thus, when
the SP/CN or SP/FM phase transition occurs, there is
usually a sudden increase of the global magnetization.
When a small magnetic field H is applied, the CN state
becomes more stable than SP state by an energy differ-
ence of H(Ms/N) sin θ per site. And from our numerical
results, the energy difference between SP state and CN
state decreases while ∆E increases (that means the Hund
coupling is becoming stronger). So long as the energy
difference caused by the magnetic field is larger than the
energy difference between SP state and CN state without
the magnetic field, a SP/CN phase transition can eas-
ily occur in the presence of the magnetic field. When in the

CN state, the gain in the kinetic energy overcomes the loss
of the exchange energy, and the carriers can move more
easily than those in the SP state, then the conductivity
increases drastically, leading to a huge negative MR. So we
can conclude that the Hund coupling plays an important
role for CMR in Mn oxides.

4 Summary

In summary, using numerical calculations to minimize
the total free energy, we have obtained the magnetic
phase diagram of the perovskite Mn oxides, such as
(La1−xXx)MnO3 with X = Ba, Ca, Sr, etc. in the whole
region from x = 0 to x = 1 at T = 0. As it shows, the
antiferromagnetism of LaMnO3 first changes to the spiral
state, not the canted state, on introducing mobile carri-
ers into the Mn oxides. The canted state is shown to be
favored in highly doped Mn oxides close to x ∼ 1. It has
been shown that, strong Hund coupling giving rise to FM
double exchange interaction competes with AF superex-
change interaction, which leads to AF/SP/FM/CN/AF or
AF/SP/CN/AF phase transitions as x changes from 0 to
1. The CMR effect in Mn oxides can be interpreted quali-
tatively in terms of a magnetic field induced SP/CN phase
transition.

One of the authors Y. Liu especially thanks Dr. Li Sheng for
his thorough help.
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